In vitro hemocompatibility of thin film nitinol in stenotic flow conditions

David Geffen School of Medicine, Department of Surgery, Division of Vascular Surgery, University of California, Los Angeles, CA, USA
Henry Samueli School of Engineering, Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA, USA
Henry Samueli School of Engineering, Department of Biomedical Engineering, University of California, Los Angeles, CA, USA
David Geffen School of Medicine, Department of Pediatrics, Division of Interventional Cardiology, University of California, Los Angeles, CA, USA

1. Introduction

Expanded polytetrafluoroethylene (ePTFE) has been used for decades as an artificial conduit for vascular bypass grafts. More recently, it has become the most commonly used material for covering stents [1]. These covered stent grafts have been extremely successful at treating aneurysms of the thoracic and abdominal aorta and have dramatically decreased the need for large open surgical procedures [2–4]. As small diameter ePTFE covered stents have become available, their use has expanded to include treatment of atherosclerotic disease in the arteries of the pelvis and lower extremities. While ePTFE covered stents have shown some success in these smaller vessels, there are still significant technical challenges and limitations to their use. For example, restenosis rates for ePTFE are approximately 30% after 12 months, and this rate is known to increase as the length of the lesion being treated increases or as the diameter of the vessel decreases [5–10]. Other disadvantages include a relatively rough surface, bulky delivery catheters double the size of those required for a comparable bare metal stents, and slow or non-existent endothelialization [11–15]. Therefore, there is an acute need to develop new biomaterials that are less thrombogenic, less bulky, and more easily endothelialized than the ePTFE currently used to cover stents.

Thin film nitinol (TFN defined as thickness less than 10 microns) is a nickel titanium alloy with a number of qualities that suggest it may be advantageous for use in blood contacting devices. Bulk nitinol (dimensions greater than 30 microns) has a long history of implantation in human beings and is currently the most common material used to manufacture stents due to its superelastic and temperature dependant shape memory properties. TFN retains the superelastic and shape memory properties indicative of bulk nitinol and also has a large tensile strength (500 MPa). TFN is manufactured in sheets between 1 and 10 microns, it is an excellent candidate for use in next-generation endovascular stents.

Because of its low profile and biologically inert behavior, thin film nitinol (TFN) is ideally suited for use in construction of endovascular devices. We have developed a surface treatment for TFN designed to minimize platelet adhesion by creating a superhydrophilic surface. The hemocompatibility of expanded polytetrafluoroethylene (ePTFE), untreated thin film nitinol (UTFN), and a surface treated superhydrophilic thin film nitinol (STFN) was compared using an in vitro circulation model with whole blood under flow conditions simulating a moderate arterial stenosis. Scanning electron microscopy analysis showed increased thrombus on ePTFE as compared to UTFN or STFN. Total blood product deposition was 8.2 ± 0.8 mg/cm² for ePTFE, 4.5 ± 2.3 mg/cm² for UTFN, and 2.9 ± 0.4 mg/cm² for STFN (n = 12, p < 0.01). ELISA assay for fibrin showed 326 ± 42 μg/cm² for ePTFE, 45.6 ± 7.4 μg/cm² for UTFN, and 194 ± 25 μg/cm² for STFN (n = 12, p < 0.01). Platelet deposition measured by fluorescent intensity was 79,000 ± 20,000 AU/mm² for ePTFE, 810 ± 190 AU/mm² for UTFN, and 1600 ± 25 AU/mm² for STFN (n = 10, p < 0.01). Mass spectrometry demonstrated a larger number of proteins on ePTFE as compared to either thin film. UTFN and STFN appear to attract significantly less thrombus than ePTFE. Given TFN’s low profile and our previously demonstrated ability to place TFN covered stents in vivo, it is an excellent candidate for use in next-generation endovascular stents.

© 2010 Elsevier Ltd. All rights reserved.
TFN may also be produced in a variety of shapes and sizes, and is not susceptible to the calcification commonly observed with ePTFE implants.

Previously, our group reported surface modifications to TFN that yielded a material with a contact wetting angle of 0° [18]. The “superhydrophilic” TFN (STFN) was designed to improve hemocompatibility as native endothelium is known to be both negatively charged and hydrophilic. Indeed, a recently published study of STFN showed dramatically decreased platelet adhesion and aggregation as compared to either ePTFE or untreated TFN (UTFN) [19]. The purpose of this study was to construct a more realistic model of the in vivo thrombotic response to TFN. We, therefore, developed an in vitro circulation model capable of circulating fresh whole blood under wall shear conditions simulating a moderate arterial stenosis. Using this model, we developed a series of assays to qualitatively and quantitatively examine experimentally formed thrombi. These techniques were then applied to prototype TFN covered stents with ePTFE covered stents serving as control.

2. Materials and methods

2.1. Thin film nitinol creation

The fabrication process for TFN used in this study has been described in detail previously [20]. Briefly, the 6 pm thick films were deposited on a 4 inch silicon wafer buffered with a 500 nm silicon oxide layer. Following deposition and removal of the film from the silicon oxide layer, the film was crystallized for 120 min at 500 °C in a vacuum of less than 1 × 10⁻⁷ torr. The TFN material used for this study had an austenite finish temperature of approximately 34 °C. In all tests conducted in this study, the TFN was in its austenite phase. All films underwent a final cleaning treatment consisting of sequential rinsing in acetone, methanol, and ethanol for 5 min prior to surface treatment.

2.2. Superhydrophilic surface treatment

The process for the superhydrophilic surface treatment of TFN has been previously described [18]. Briefly, thin films of nitinol were placed into a buffered oxide etchant (BOE: aqueous NH₄–HF etchant) to eliminate the native oxide layer followed by passivation in 30% nitric acid (HNO₃) for 40 min. Samples underwent a final oxidation process by immersion in 30% H₂O₂ for 15 h at room temperature. The surface treated TFN was stored in deionized water prior to testing. The films produced using this process have a wetting contact angle of 0° whereas the fabricated cleaned films have wetting contact angle of approximately 65°. Previous studies using transmission electron microscopy have demonstrated that the surface treated treatment produces a surface layer of TiO₂ 10 nm thick, whereas the untreated film has a TiO₂ 10 nm in thickness [21].

2.3. Creation of covered stents and in vitro flow loop circulation model

Covered stents were manufactured by producing rectangular sheets of UTFN, STFN, and ePTFE with dimensions of 1.0 cm × 0.5 cm. All coverings were weighed to an accuracy of 0.1 mg. The coverings were then deployed circumferentially in silicone tubing with an inner diameter of 3.125 mm. The coverings were deployed so that the longer 1.0 cm dimension was conformal with the tube. Next, Wingspan stents (Boston Scientific, Natick, MA) with a length of 20 mm and a diameter of 4.5 mm were deployed inside the coverings such that the center of the stent aligned with the center of the covering. A schematic diagram of the in vitro circulation model can be seen in Fig. 1. The silicone segments containing the deployed stents were connected in series to a length of silicone tubing placed within the head of a peristaltic roller pump (Ismatec BVP 115 V pump drive system with model 380-AD single channel pump head, Glattbrugg, Switzerland). This created a continuous loop of silicone tubing approximately 60 cm in length. Of note, the compressed section gap on the pump was set to the least occlusive setting in an effort to minimize blood trauma during circulation. The majority of the loop, including the portion containing the covered stent, was placed in a 37 °C waterbath. Phosphate buffered saline (PBS) was introduced into the loop via a 3-way stopcock and circulated at a rate of 10 mL/min for 5 min. While the PBS was circulating, 15 mL of fresh whole blood was collected via venipuncture from healthy adult volunteers who reported no use of anticoagulants or other drugs within the past 2 weeks. After circulating the PBS for 5 min, the loop was disconnected at the 3-way stopcock and the syringe containing the blood was connected to the stopcock’s open port. The free end of the loop was placed in a waste basin and the blood was then gently introduced into the flow loop without the addition of any anticoagulants. Though the loop’s total volume was approximately 4.6 mL, all 15 mL of collected blood was injected into the loop prior to circulation to ensure complete washout of the PBS. Excess blood and PBS were collected in the waste basin from the loop’s free end and disposed of using appropriate procedures. Once the loop was filled, the loop was reconnected and the blood was circulated at a rate of 6.6 mL/s. This rate was chosen because it corresponds to a wall shear rate (WSR) of 2100 s⁻¹ at the surface of the stent, which correlates to shear rates observed in moderate arterial stenoses [22].

WSR is given by the equation:

$$\text{WSR} = \frac{4Q}{\pi R^2}$$

where Q is equal to flow in mL/sec. and R is the radius in cm. After 3 h, the blood was drained from the loop and PBS was again circulated at 10 mL/min for 5 min to remove any non-adherent thrombus. Of note, the blood was generally free from thrombi after 3 h of circulation. Following this, the stents were removed from the silicone tubing and the coverings were unwrapped from the stents for further testing.

2.4. Scanning electron microscopy

To prepare samples for scanning electron microscopy (SEM), they were fixed in a solution of 2.5% glutaraldehyde, 1% osmic acid at 4 °C for 1 h. After 1 h, samples underwent serial dehydration in solutions of increasing ethanol concentration (50%, 60%, 70%, 80%, 90%, 95%, 100%) twice for 10 min each. Once dehydrated, the samples underwent critical-point drying overnight and were subsequently analyzed using scanning electron microscopy. Images were chosen at random and represent approximately 0.01 mm² of surface area.

2.5. Total blood product deposition

To calculate total blood product deposition, coverings were removed from the circulation model and excess liquid was removed via capillary action by carefully applying all edges of the covering to an absorbent surface. After all excess liquid was removed, the coverings were weighed again to an accuracy of 0.1 mg and the original weight was subtracted from this value to calculate change in weight due to blood product deposition.

2.6. Fibrin deposition

The process used for quantification of fibrin in experimentally generated thrombi has been described previously [23]. After

Please cite this article in press as: Kealey CP, et al., *In vitro hemocompatibility of thin film nitinol in stenotic flow conditions*, Biomaterials (2010), doi:10.1016/j.biomaterials.2010.08.014
removal from the flow loop, coverings were immersed in 2 mL of a plasmin solution (0.5 CU/mL, Innovative Research Inc., Novi, MI) diluted in PBS containing 1 mM Tris/HCl, pH 7.4. The coverings were then incubated at 37 °C with gentle rocking at 50 rev/min for 30 min. Following plasmin digestion, the samples were removed and the solution was collected. The solution was then centrifuged at 4300 × g for 15 min at 4 °C and the supernatant was collected. Fibrin degradation products were then quantified in the supernatant using a commercially available enzyme linked immunosorbent assay (Asserachrom D-Di, Stago, Parsippany, NJ). Total mg/cm² of graft material was then calculated from the solution’s concentration.

2.7. Platelet deposition

Platelet deposition was quantified using fluorescent labeling of platelets with Calcein AM (Invitrogen, Carlsbad, CA). For these studies, a stock solution of Calcein AM was added to the syringe prior to drawing blood for use in the in vitro circulation model, such that the final concentration was 15 μM. The blood was then incubated in the circulation model in the usual manner described above. After 3 h, the coverings were removed for analysis. Fluorescent images were obtained using a Photometrics CoolSNAP HQ2 CCD camera mounted on a Nikon Eclipse Ti Microscope. Qualitative analysis was performed using an identical threshold level. The summation of fluorescent intensity for each data set was used as a proxy for total platelet adherence. Average fluorescent intensity for 10 randomly selected fields of view was then calculated.

2.8. Mass spectrometry

The acellular protein supernatant used for fibrin quantification, was subsequently dried in to a pellet using vacuum centrifugation. Dried sample pellets were then prepared for LC-MS/MS analysis using a previously described protocol [24]. Briefly, dried sample pellets were solubilized in 40 mM Tris–HCl pH 8.3, 6 mM guanidine HCl, 5 mM DTT, centrifuged (15,000 × g, 2 min, RT), and supernatant diluted to <1 mg guanidine HCl with 40 mM Tris–HCl pH 8.3. The acellular protein supernatant was then sequenced by tryptic digestion (overnight, 37 °C with gentle rocking) and the supernatant was collected. A plasmin solution (0.5 CU/mL, Innovative Research Inc., Novi, MI) in a 5 mM DTT, 1 M guanidine HCl solution was collected. The solution was then centrifuged at 1600 × g for 15 min at 4 °C and the supernatant was collected. Fibrin degradation products were then quantified in the supernatant using a commercially available enzyme linked immunosorbent assay (Asserachrom D-Di, Stago, Parsippany, NJ). Total mg/cm² of graft material was then calculated from the solution’s concentration.

2.9. Statistical analysis

Results of experiments are expressed as means ± standard error of mean. Data was analyzed using one-way analysis of variance (ANOVA) testing between the three sample groups (ePTFE, UTFN, STFN). Results with p < 0.05 were considered to be statistically significant.

3. Results

3.1. Scanning electron microscopy

Qualitative analysis of scanning electron microscopy data showed markedly increased blood product deposition on ePTFE as compared to either UTFN or STFN. The deposited product was dense, making the morphology of individual components difficult to discern. In contrast, UTFN showed a markedly decreased density of blood product deposition. The deposit was composed of both fibrin and platelets with occasional red and white blood cells visible as well. STFN also showed markedly reduced blood product deposition as compared to ePTFE but had a noticeably denser fibrin layer than that observed on UTFN. Platelet, red and white blood cell deposition was comparable to that observed on UTFN (Figs. 1 and 2).

3.2. Total blood product, fibrin, and platelet deposition

ePTFE showed the greatest amount of blood product deposition as evidenced by an average weight change of 6.3 ± 0.8 mg/cm² after exposure to the in vitro circulation model. UTFN had the second highest amount of blood product deposition at 4.5 ± 2.3 mg/cm². STFN showed the lowest amount of blood product deposition at 2.9 ± 0.4 mg/cm² (n = 12, p < 0.01) (Fig. 3A). Fibrin deposition was greatest on ePTFE with 325.9 ± 42 μg/cm². STFN had the second highest amount of fibrin deposition with 194.1 ± 25 μg/cm². Finally UTFN showed the lowest amount of fibrin deposition with 45.6 ± 7.4 μg/cm² (n = 12, p < 0.01) (Fig. 3B). Platelet deposition was analyzed both qualitatively (representative fluorescence microscopy images) and quantitatively (average fluorescent intensities). Quantitative analysis of platelet deposition was obtained by measuring average fluorescent intensity across ten random images from each group. ePTFE had greatly increased levels of fluorescence as compared to either of the thin films. Average intensity for ePTFE was 79,000 ± 20,000 AU/mm². Average intensity for UTFN was 810 ± 190 AU/mm², and for STFN the value was 1600 ± 440 AU/mm² (n = 10, p < 0.01) (Fig. 3C). Qualitative images show markedly greater amounts of platelet deposition on ePTFE than either UTFN or STFN. UTFN tended towards small groups of aggregated platelets, whereas STFN tended towards a more evenly distributed network of platelet deposition, giving rise to a “speckled” appearance (Fig. 4).

3.3. Mass spectrometry

Mass spectrometry was used to analyze the acellular portion of the plasmin-digested thrombi. The number of proteins, unique
peptides and unique spectra was compared across the 3 materials. In each case ePTFE had the greatest number, followed by STFN, the UTFN (Fig. 5A). The protein with the highest abundance in each of the samples was the fibrin \(\alpha \) chain. Fig. 5B shows a representative spectrum for this protein, and indicates the high quality of the data.

Next, our analysis turned to differences in individual protein deposition amongst the 3 materials as quantified by the number of spectral counts. Plasmin was used as the positive control because an equal amount was added to each sample. Average spectral counts per sample were the following: ePTFE 58 ± 5.8, UTFN 61 ± 14, STFN 60 ± 10 (\(n = 3, p = 0.95 \)) (Fig. 6F). Other proteins examined include the \(\alpha \), \(\beta \), and \(\gamma \) chains of fibrin as well as the \(\alpha \) and \(\beta \) chains of hemoglobin. For fibrin, the data is reported for ePTFE, UTFN, and STFN, respectively and is as follows: \(\alpha \) chain 119 ± 11, 38 ± 18, 90 ± 59 (\(n = 3, p = 0.33 \)) (Fig. 6A), \(\beta \) chain 14 ± 11, 0 ± 0, 0 ± 0 (\(n = 3, p < 0.01 \)) (Fig. 6B), \(\gamma \) chain 5.3 ± 1.1, 1 ± 1, 3.3 ± 3.5 (\(n = 3, p = 0.146 \)) (Fig. 6C). For hemoglobin the data is as follows: \(\alpha \) chain, 54.3 ± 3.8, 6.3 ± 6.5, 7.3 ± 2.9 (\(n = 3, p < 0.01 \)) (Fig. 6D), \(\beta \) chain, 81 ± 3.8, 14 ± 2.6, 34 ± 7.6 (\(n = 3, p < 0.01 \)) (Fig. 6E).

3.4. Flow separation zones

A consistent finding throughout this study was the preferential accumulation of thrombus at the edges of stent struts and on the stents themselves in regions where the leading edge changes its angle to the blood flow. The increased amount of thrombus at the stent edges was observed on all materials tested but was consistently greater on ePTFE than either of the thin films (Fig. 7).

4. Discussion

In this study we constructed an in vitro circulation model using whole blood to simulate the in vivo thrombotic response to thin film nitinol with ePTFE serving as control. For these studies, non-anticoagulated blood circulating at a wall shear rate similar to that found in a moderate arterial stenosis was used. An additional level of realism was added to our model by using prototype covered stents, as opposed to the bare material, because stents are known to cause local flow disturbances that influence patterns of thrombosis.
We report that TFN (both superhydrophilic surface treated and non-surface treated) showed less blood product deposition than ePTFE by all modalities used to examine the thrombotic response.

It is widely agreed that the first event in blood-biomaterial contact is a rapid adsorption of protein on to the biomaterial's surface. Adsorbed proteins then interact with other blood components in a process that determine both the quality and quantity of thrombus formation [25]. Factors known to influence this process include surface roughness, surface charge, surface energy and contact wetting angle. With regard to surface roughness, it has been demonstrated that as this parameter increases, so too does protein adsorption, cell adhesion, and the thrombotic response [26–29]. This is likely due to both the increased number of binding sites as well as the more turbulent local flow conditions caused by rougher materials. We have previously reported that the average peak to valley surface roughness of our TFN is 5 nm, whereas that of ePTFE by all modalities used to examine the thrombotic response.

The quality of the titanium oxide layer formed on the surface of TFN is another important factor that likely increases its hemocompatibility. While the surface of untreated TFN is composed of a layer of TiO2 10 nm thick, the superhydrophilic treatment process yields a TiO layer 100 nm in thickness [21]. Previous studies regarding the hemocompatibility of titanium oxide films have concluded that the low interface tension between TiO films and blood provides an insulating cushion that prevents protein adhesion and clotting cascade activation [30].

In order to better understand the characteristics of the thrombi forming on the surface of TFN, we developed assays for the quantification of fibrin and platelets. The fibrin assay made use of an ELISA that allowed us to quantify fibrin deposition per unit area. This assay demonstrated that fibrin deposition was greatest on ePTFE, followed by STFN, but that UTFN had the least. The increased deposition of fibrin on STFN as compared to UTFN is consistent with a large body of work showing that hydrophilic materials activate the intrinsic arm of the clotting cascade [31–33]. The in vivo effects of increased fibrin deposition on STFN are not clear as fibrin acts as a scaffold for both thrombus formation and endothelial cell adhesion and proliferation. It is conceivable that increased fibrin deposition on STFN may facilitate one or both of these processes. Studies examining rates of acute stent thrombosis, speed of endothelial coverage, and degree of neointimal hyperplasia as compared to UTFN are presently being investigated using in vivo models.

Platelet adhesion was examined using fluorescently labeled platelets. Both qualitative and quantitative data show increased platelet adhesion on ePTFE. Overall platelet fluorescence was more than 2 orders of magnitude larger on ePTFE than on either thin film. Additionally, a consistent “halo” of background fluorescence was observed on all ePTFE samples that we believe represents platelets caught within the woven polymer fibers. This effect was absent on TFN and highlights the advantage of our film’s smooth, metallic surface. Because platelets are the primary mediator of acute stent thrombosis, we hope that the marked reduction in platelet adhesion seen in vitro will extend to in vivo results [34,35].

A surprising finding from this study was the increased platelet deposition on STFN as compared to UTFN. Though the difference between the two films was minor compared to the difference with ePTFE, there were both a qualitatively different pattern of platelet distribution (small aggregates on UTFN, uniformed “speckling” on STFN) as well as a quantitative finding of increased fluorescence...

Fig. 3. A) Total blood product deposition as measured by change in weight (mg/cm²) after exposure to the in vitro circulation model for 3 h at a wall shear rate of 2200 s⁻¹. B) Fibrin deposition (µg/cm²) measured by ELISA. C) Platelet deposition (AU/mm²) measured using fluorescently labeled platelets, log scale. Note that ePTFE has the greatest amount of total blood product, fibrin, and platelet deposition as compared to either untreated or superhydrophilic TFN.

Fig. 4. Fluorescent images of platelet deposition on the 3 materials after exposure to the in vitro circulation model. ePTFE showed large clusters of aggregated platelets and a halo effect of background fluorescence likely due to trapped platelets within the woven polymer fibers. UTFN tended towards smaller clusters of aggregated platelets. STFN showed a more evenly distributed platelet network, giving a “speckled” appearance.

Please cite this article in press as: Kealey CP, et al., In vitro hemocompatibility of thin film nitinol in stenotic flow conditions, Biomaterials (2010), doi:10.1016/j.biomaterials.2010.08.014
intensity on STFN. This is in direct contrast to earlier studies using PRP under static conditions. These studies showed markedly reduced platelet adhesion on STFN as compared to UTFN [19]. These findings were thought to be explained by the superhydrophilic surface treatment of STFN because platelet adhesion is known to decrease with increasing hydrophilicity [36]. It is likely that the results presented here are different because of the increased fibrin deposition on STFN due to the hydrophilic activation of the intrinsic clotting cascade. Fibrin depositing on the superhydrophilic surface is serving as a scaffold for platelet adhesion, thus overcoming the tendency of hydrophilic surfaces to repel platelets. This PRP used in the static experiments is known to yield a solution low in fibrin content, and one can see from the SEM images in that study that no fibrin is apparent on any of the analyzed surfaces [19,37]. This explanation also accounts for the more homogenous, or “speckled” distribution of platelets on STFN that would be expected if the platelets are attaching to an evenly distributed fibrin network.

Mass spectrometry was used to analyze the acellular component of the plasmin-digested thrombi. These results confirm findings from the other assays, and show that ePTFE bound a greater number of unique proteins, peptides, and spectral counts than either of the thin films. More specifically, ePTFE exhibited greater amounts of the α, β, and γ chains of fibrin confirming the results obtained from our ELISA assay for fibrin concentration. Mass spectrometry also demonstrated increased amounts of the α, β chains of hemoglobin on ePTFE. This strongly suggests that ePTFE attracts increased red blood cell deposition in addition to the other quantified thrombotic components.

Fig. 5. Mass spectrometry data. A) Venn diagrams showing the number of proteins, unique peptides, and unique spectra of each of the three materials. ePTFE had the largest amount for each parameter. B) A representative spectrum of the fibrin α chain.

Fig. 6. Mass spectrometry data showing average spectral counts for six different proteins. A) Fibrin α chain B) Fibrin β chain C) Fibrin γ chain D) Hemoglobin α chain E) Hemoglobin β chain F) Plasmin (positive control). This data confirms the trend in fibrin deposition measured by ELISA. Additionally, increased hemoglobin deposition on ePTFE suggests a larger amount of RBCs depositing on this material than either of the thin films.
An interesting result of these experiments was the visualization of thrombus formed preferentially around the stent struts and in areas where the struts change direction relative to the blood flow. Over the past decade, there has been a modest but growing body of literature regarding the flow disturbances induced by stent placement [38–40]. Most of these studies have used computational fluid dynamics simulations to visualize these disturbances. A unique advantage of this study was that the stent coverings functioned like a photographic negative of the stent, allowing us to visualize the patterns of thrombus deposition around the struts. Notably, while all materials were exposed to the same local flow environments, the thin film performed markedly better than the ePTFE, lacking the dense thrombotic deposits in the peri-strut regions. We believe that these results are significant and provide strong experimental evidence that stent design to encourage laminar flow and normalization of wall shear stress should be an area of active investigation.

The in vitro circulation model used for these experiments provides a quick and efficient test system to simulate in vivo interactions between endovascular devices and whole human blood under flow conditions. While we believe the information provided by this model is both useful and significant, the limitations of this system must also be considered. First and foremost, there is no endothelium. It is well known that endothelial cells mediate interactions between blood and the vessel wall, and that damage to the endothelium leads to activation of both platelets and the clotting cascade [41]. While other authors have used similar circulation models, they examined the effects of different stents on activation of blood components such as platelets and leukocytes [42,43]. They concluded that maximum activation of the blood occurred after 30 min of circulation and plateaued thereafter. Additional problems with this model include the relatively large surface area of silicone tubing in contact with the blood, as well as the use of a peristaltic pump head for tube compression which can lead to hemolysis and thrombosis. Therefore, it seems reasonable to conclude that the circulating blood used in this study was highly activated. This likely led to a large amount of non-specific clotting that would not be observed in an in vivo system making definitive judgments about relative hemocompatibilities of the different materials difficult. Along these lines, we anticipate questions about both the use of non-anticoagulated blood and the relatively long circulation time of 3 h. Initial testing with this system used ACD anti-coagulated blood and a circulation time of 30 min. These conditions, however, failed to elicit significant thrombus deposition on all of the coverings being tested, and a system of trial and error determined the optimum conditions chosen to elicit significant differences between the materials. In this study, we chose to examine thrombus accumulation as opposed to overall blood activation based on the assumption that the system itself will maximally activate the blood after 30 min. By including all three types of covered stents in each loop, we exposed all three materials to the same conditions, thus providing an internal control. Therefore, while one cannot directly correlate these results to in vivo performance, they suggest that both thin films attract significantly less thrombus deposition than ePTFE under highly thrombogenic conditions.

5. Conclusion

The purpose of this study was to compare the hemocompatibility profiles of ePTFE, UTFN and STFN in an in vitro circulation model using fresh whole human blood under conditions simulating a moderate arterial stenosis. A series of assays to qualitatively and quantitatively analyze the experimentally formed thrombi were developed. This data suggests that both forms of TFN tested attract significantly less thrombus than ePTFE under the highly thrombogenic experimental conditions. Our previous work has demonstrated the feasibility of constructing TFN covered stents and we have successfully placed them in vivo. Additional advantages of TFN include the ability to micropattern its surface, and the ability to make extremely low-profile transcatheter devices. As stent graft technology advances, there will be a need for less thrombogenic, less bulky materials that facilitate rapid healing and incorporation in to the vessel wall. The current study, combined with our previous work, suggests that TFN is an excellent candidate material.

Acknowledgements

This work was supported by NIH challenge grant number 1RC1HL099445-01

Appendix

Figures with essential color discrimination. Figs. 1,3–7 in this article are difficult to interpret in black and white. The full color images can be found in the online version, at doi:10.1016/j.biomaterials.2010.08.014.