• UCLA Health
  • myUCLAhealth
  • School of Medicine
CASIT

Center for Advanced Surgical & Interventional Technology (CASIT)

CASIT
  • UCLA Surgery
  • About Us
    • What is CASIT
    • History
    • CASIT Governance and Collaboration
    • Booking Information & Directions
    • Contact Us
  • Education
    • Course Offerings
    • FLS and FES Testing
    • Surgical Education Technologies
    • CASIT Medical Education and Simulation Fellowship
    • Robotic Pancreas Surgery Program
    • Past Conferences
  • Research Innovation
    • Focal Laser Ablation for Prostate Cancer Treatment
    • Ultrasound-MRI Fusion for Targeted Diagnosis of Prostate Cancer
    • Previous Projects
  • Join & Contribute
    • CASIT Giving
  • Meet Our Team
  • Quick Links
    • CASIT Calendar
    • Newsletter
    • Contact Us
  • UCLA Health
  • myUCLAhealth
  • School of Medicine

Center for Advanced Surgical & Interventional Technology (CASIT)

Research Innovation

Research Innovation

Research Innovation

  • Focal Laser Ablation for Prostate Cancer Treatment
  • Ultrasound-MRI Fusion for Targeted Diagnosis of Prostate Cancer
  • Previous Projects
    • Low-Intensity Focused Ultrasound for Transcranial Neuromodulation
    • Vibroacoustography for Head and Neck Cancer Margin Detection
    • Tactile Feedback for Prostheses and Sensory Neuropathy
    • Reflective Terahertz Medical Imaging Systems
    • Laser-generated Shockwaves for Treatment of Infected Wounds
    • Ultrasound-Guided Procedural Training
    • Clinical Research
    • Motion Scaling
    • Surgical Simulations Involving Elastic Cardiac Geometries
    • Rapid Transition Polymer for Temporary Vascular Occlusion During Segmental Liver Resection
    • Developing and Testing Thin Film Nitinol Low-Profile Devices for use in Vascular Repair
    • Flexible 3D ultrasound technology for diagnosis of injuries and intra-operative guidance
    • Novel Telepresence Application Using Robotic Wireless System
    • MEMS Sensors for In-vivo Patient Monitoring
    • Haptic-Guided Telementoring Systems
  • Focal Laser Ablation for Prostate Cancer Treatment
  • Ultrasound-MRI Fusion for Targeted Diagnosis of Prostate Cancer
  • Previous Projects
  1. Home
  2. CASIT
  3. Research Innovation
  4. Focal Laser Ablation for Prostate Cancer Treatment

Focal Laser Ablation for Prostate Cancer Treatment

Share this

Introduction

Approximately 175,000 men are diagnosed with prostate cancer in U.S. annually resulting in 30,000 deaths. The mortality to incidence ratio is relatively low, however, conventional therapies such as radical prostatectomy and radiation therapy are associated with numerous side effects and thus a substantial reduction in quality of life. Consequently there is a desire to develop minimally invasive therapies with fewer side effects. Recent advances in prostate cancer diagnosis (link to biopsy page) have enabled localization of the cancerous lesion within the prostate which can be subsequently treated via focal laser ablation (Figure 1).

Focal Laser AblationFigure 1: A – Region of interest (ROI) identified via MRI with cancer confirmed via targeted biopsy. B – Cancerous lesion can be treated with focal laser ablation.

Focal Laser Ablation: The CASIT Approach

Focal laser ablation (FLA) achieves oncologic control by inducing hyperthermic conditions throughout the target lesion. Successful treatment requires accurate guidance of the laser fiber to the target lesion as well as real-time monitoring. Both of these tasks can be achieved with magnetic resonance imaging, however, this method is time consuming and expensive. We are developing an alternative approach in which ultrasound and interstitial probes are used for laser fiber guidance and treatment monitoring respectively (Figure 2).

Focal Laser Ablation

Figure 2: A – Setup during focal laser ablation. Ultrasound is used to guide a laser fiber to a target lesion with the resulting ablation monitored via four interstitial thermal probes. B – Thermal data acquired by the interstitial thermal probes for two laser activations at different locations in the prostate. Note that the probe monitoring the laser tip exceeds 60°C while safety probes outside the target treatment zone (rectal wall, lateral capsule, anterior) remain relatively cool. C – The treated tissue appears as a dark region on post-operative MRI. The location of each probe is indicated with the probe at the laser tip lying inside the treatment zone and all safety probes positioned in untreated tissue.

This project is a multi-disciplinary effort involving urologists, radiologists, pathologists, engineers and industry collaborators. The video below outlines our journey which started with the development of targeted biopsy for prostate cancer diagnosis.

Technology Development

  • Interstitial Probes – Widespread adoption of FLA is contingent upon the development of a low cost monitoring modality. To this end, we are developing interstitial sensors that monitor both temperature and laser-tissue interaction. Our work includes simulations, fabrication and characterization of novel sensors. An example of optical monitoring is shown in Figure 3.
  • Damage Models – We are developing computational models to provide real-time feedback during FLA. These models quantify cellular destruction based on thermal and optical data gathered by interstitial probes during FLA.
  • Micro Ultrasound – This project is an industry collaboration with Exact Imaging to explore the utility of a high resolution ultrasound system for monitoring FLA.

Focal Laser Ablation

Figure 3: A – Experimental setup for assessing the utility of interstitial optical monitoring. The insulated box contains a custom designed synthetic tissue that mimics the thermal and optical properties of the human prostate. Note that the optical probe is positioned at a known distance from the laser fiber (r). B – Detailed view of the optical probe which acts as an isotropic point detector (red arrows indicate light collection). C – The test was performed under MRI to enable quantification of the induced coagulation zone. The green line indicates the laser fiber with the optical probe visible to the left. D – The optical signal recorded for multiple laser fiber-probe seperations (r). An inflection point is observed when the coagulation radius reaches the optical probe, thus, demonstrating that the probe can be used to achieve predefined coagulation radii without the need for real-time MRI.


Profile Photo
Leonard Marks, MD

Professor, deKernion Endowed Chair in Urology
Profile Photo
Rory Geoghegan, PhD

Project Scientist
Profile Photo
Shyam Natarajan

 
Profile Photo
Alan Priester, PhD

Assistant Project Scientist, Department of Urology
Profile Photo
Jake Pensa, MS

Graduate Student Researcher

Selected Publications:

Geoghegan, R., Priester, A., Zhang, L., Wu, H., Marks, L., & Natarajan, S. (2020, July). Monitoring Focal Laser Ablation with Interstitial Fluence Probes: Monte Carlo Simulation and Phantom Validation. In 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) (pp. 5272-5275). IEEE.

Geoghegan, R., Santamaria, A., Priester, A., Zhang, L., Wu, H., Grundfest, W., ... & Natarajan, S. (2019). A tissue-mimicking prostate phantom for 980 nm laser interstitial thermal therapy. International Journal of Hyperthermia, 36(1), 992-1001.

Natarajan, S., Priester, A. M., Garritano, J., Marks, L., Grundfest, W., & Geoghegan, R. (2019). U.S. Patent Application No. 16/072,979.

Nassiri, N., Chang, E., Lieu, P., Priester, A. M., Margolis, D. J., Huang, J., ... & Natarajan, S. (2018). Focal therapy eligibility determined by magnetic resonance imaging/ultrasound fusion biopsy. The Journal of urology, 199(2), 453-458.

Natarajan, S., Jones, T. A., Priester, A. M., Geoghegan, R., Lieu, P., Delfin, M., ... & Grundfest, W. (2017). Focal laser ablation of prostate cancer: feasibility of magnetic resonance imaging-ultrasound fusion for guidance. The Journal of urology, 198(4), 839-847.

Natarajan, S., Raman, S., Priester, A. M., Garritano, J., Margolis, D. J., Lieu, P., ... & Marks, L. S. (2016). Focal laser ablation of prostate cancer: phase I clinical trial. The Journal of urology, 196(1), 68-75.

Like Us on Facebook Follow Us on Twitter Subscribe to Our Videos on YouTube Follow us on Instagram Connect with Us on LinkedIn Follow us on Pinterest
UCLA Health hospitals ranked best hospitals by U.S. News & World Report
  • UCLA Health
  • Find a Doctor
  • School of Medicine
  • School of Nursing
  • UCLA Campus
  • Directory
  • Newsroom
  • Subscribe
  • Patient Stories
  • Giving
  • Careers
  • Volunteer
  • International Services
  • Privacy Practices
  • Nondiscrimination
  • Billing
  • Health Plans
  • Emergency
  • Report Broken Links
  • Terms of Use
  • 1-310-825-2631
  • Maps & Directions
  • Contact Us
  • Your Feedback
  • Report Misconduct
  • Get Social
  • Sitemap
Like Us on Facebook Follow Us on Twitter Subscribe to Our Videos on YouTube Follow us on Instagram Connect with Us on LinkedIn Follow us on Pinterest

Sign in to myUCLAhealth

Learn more about myUCLAhealth